Chapter Three

Inverters

Introduction:

DC to AC converters are known as inverters. The function of an inverter is to change a DC input voltage to a symmetrical AC output voltage of desired magnitude and frequency. A variable output voltage can be obtained by varying the input DC voltage keeping the gain of the inverter constant. On the other hand, if the DC input voltage is fixed, a variable output voltage can be obtained by varying the gain of the inverter, which is normally accomplished by pulse-width- modulation (PWM) control within the inverter.

Types of inverter circuits:

1- Centre-tapped supply inverter.

3- Section-type inverter.

2- Centre-tapped lead inverter.

4- Single-phase bridge inverter.

5- Half-wave 3-phase inverter.

6- Three-phase bridge inverter.
The output voltages in the section-type inverter and half-wave 3-ph inverter contain dc components.

Series inverters:

When T_{1} is fired, capacitor C will start charging. When the capacitor C is completely charged, the current i will be zero.

Then, when T_{2} is on, the capacitor C will start discharging through $R \& L$, i.e., causing negative current in the load.

For the first period, T_{1} is on:
$E=v_{R}+v_{L}+v_{C}=R i+L \frac{d i}{d t}+\frac{1}{C} \int_{0}^{t} i d t+\mathrm{V}_{\mathrm{C}_{2}}$

$$
0=R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{1}{C} i
$$

$$
\frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{1}{L C} i=0
$$

The solution of this equation is:

$$
i=e^{-\alpha t}\left(A_{1} \sin \omega t+A_{2} \cos \omega t\right)
$$

where:

$$
\begin{gathered}
\alpha=\frac{R}{2 L} \\
\omega=\sqrt{\omega_{O}^{2}-\alpha^{2}}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}} \\
\omega_{O}=\frac{1}{\sqrt{L C}}
\end{gathered}
$$

Form the initial conditions:
At $\mathrm{t}=0, \mathrm{i}=0 \quad \therefore A_{2}=0$

$$
\begin{gathered}
\therefore i=e^{-\alpha t} A_{1} \sin \omega t \\
\frac{d i}{d t}=-\alpha e^{-\alpha t} A_{1} \sin \omega t+e^{-\alpha t} A_{1} \omega \cos \omega t
\end{gathered}
$$

At $\quad \mathrm{t}=\left.0 \quad \frac{d i}{d t}\right|_{\mathrm{t}=0}=A_{1} \omega$
At $t=0$ in equation (1)
$E=L \frac{d i}{d t}+V_{C_{2}}=A_{1} \omega L+V_{C_{2}}$
$A_{1}=\frac{E-V_{C_{2}}}{\omega L}$
$\therefore i=\frac{E-V_{C_{2}}}{\omega L} e^{-\alpha t} \sin \omega t$

$$
\begin{gathered}
\therefore v_{R}=i R=\frac{E-V_{C_{2}}}{\omega L} R e^{-\alpha t} \sin \omega t \\
v_{L}=L \frac{d i}{d t}=\frac{E-V_{C_{2}}}{\omega} e^{-\alpha t}(\omega \cos \omega t-\alpha \sin \omega t) \\
v_{C}=E-v_{L}-v_{R} \\
-66-
\end{gathered}
$$

For the second period, T_{2} is on:

$$
v_{L}+v_{R}+v_{C}=0
$$

$L \frac{d i}{d t}+\frac{1}{C} \int_{0}^{t} i d t+V_{C_{1}}+R i=0$

$$
\frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{1}{L C} i=0
$$

The solution of this equation and using the initial condition gives:
$i=A e^{-\alpha t} \sin \omega t$
where

$$
\begin{gathered}
\alpha=\frac{R}{2 L} \\
\omega=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}
\end{gathered}
$$

At $t=0, i=0$ in equation (2) gives:
$\left.\frac{d i}{d t}\right|_{\mathrm{t}=0}=-\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\mathrm{~L}}$
From equation (3):

$$
\frac{d i}{d t}=-\alpha e^{-\alpha t} A \sin \omega t+e^{-\alpha t} A \omega \cos \omega t
$$

$\left.\frac{d i}{d t}\right|_{\mathrm{t}=0}=A \omega=-\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\mathrm{~L}}$
$\therefore A=-\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\omega \mathrm{~L}} \quad$ in (3)
$\therefore i=-\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\omega \mathrm{~L}} e^{-\alpha t} \sin \omega t$

$$
v_{R}=R i=-\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\omega \mathrm{~L}} R e^{-\alpha t} \sin \omega t
$$

$$
\begin{gathered}
v_{L}=L \frac{d i}{d t}=-\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\omega} e^{-\alpha t}(-\alpha \sin \omega t+\omega \cos \omega t) \\
v_{C}=-\left(v_{R}+v_{L}\right)
\end{gathered}
$$

Note: T_{1} is on:

$$
\begin{gathered}
v_{C}=E-v_{L}-v_{R} \\
=E-\frac{E-V_{C_{2}}}{\omega} e^{-\alpha t}(\omega \cos \omega t-\alpha \sin \omega t)-\frac{E-V_{C_{2}}}{\omega L} R e^{-\alpha t} \sin \omega t
\end{gathered}
$$

At $\quad \mathrm{t}=\pi / \omega \quad v_{C}=V_{C_{1}}$

$$
\begin{equation*}
V_{C_{1}}=E-\frac{E-v_{C_{2}}}{\omega} e^{\frac{-\alpha \pi}{\omega}}(-\omega) \tag{1}
\end{equation*}
$$

$V_{C_{1}}=E\left(1+e^{\frac{-\alpha \pi}{\omega}}\right)-V_{C_{2}} e^{\frac{-\alpha \pi}{\omega}}$
T_{2} is on:
$v_{C}=-\left(v_{R}+v_{L}\right)$

$$
=\frac{V_{C_{1}}}{\omega L} R e^{-\alpha t} \sin \omega t+\frac{V_{C_{1}}}{\omega} e^{-\alpha t}(-\alpha \sin \omega t+\omega \cos \omega t)
$$

At $\quad \mathrm{t}=\pi / \omega \quad v_{C}=V_{C_{2}}$
$V_{C_{2}}=\frac{\mathrm{V}_{\mathrm{C}_{1}}}{\omega} e^{\frac{-\alpha \pi}{\omega}}(-\omega)=-V_{C_{1}} e^{\frac{-\alpha \pi}{\omega}}$
From (2) in (1):
$V_{C_{1}}=E\left(1+e^{\frac{-\alpha \pi}{\omega}}\right)+V_{C_{1}} e^{\frac{-2 \alpha \pi}{\omega}}$

$$
V_{C_{1}}=\frac{E\left(1+e^{\frac{-\alpha \pi}{\omega}}\right)}{1-e^{\frac{-2 \alpha \pi}{\omega}}}=\frac{E}{1-e^{\frac{-\alpha \pi}{\omega}}} \quad V_{C_{1}}>E
$$

Centre-tapped supply inverter:

single-phase half-bridge:

T_{1} is on, C is charged $>E / 2$, then T_{1} is off before itry to reverse.
when T_{2} is on, C is charged in reverse direction.
when T_{1} is on:

$$
i=\frac{E-2 V_{C_{2}}}{2 \omega L} e^{-\alpha t} \sin \omega t
$$

when T_{2} is on:

$$
i=-\frac{E+2 V_{C_{1}}}{2 \omega L} e^{-\alpha t} \sin \omega t
$$

Bridge inverters:

At $\quad \omega t=0 \quad T_{1}$ ON

$$
\begin{array}{ll}
\omega \mathrm{t}=\beta & \mathrm{T}_{2} \mathrm{ON} \\
\omega \mathrm{t}=\pi & \mathrm{T}_{4} \mathrm{ON} \\
\omega \mathrm{t}=\pi+\beta & \mathrm{T}_{3} \mathrm{ON}
\end{array}
$$

$$
V_{r m s}=E \sqrt{1-\frac{\beta}{\pi}}
$$

For R-L load:

(1) $0<\omega t<\beta, \quad \mathrm{v}=0, \mathrm{D}_{1} \& \mathrm{~T}_{3}$ on.
$i=i_{o} e^{\frac{-R}{L} t}=i_{o} e^{\frac{-\omega t}{Q}} \quad, Q=\frac{\omega L}{R} \quad, \quad i_{o}<0$
(2) $\beta<\omega t<\pi, \quad v=E, T_{1} \& T_{2}$ or $D_{1}+D_{2}$ on.
$i=\frac{E}{R}+\left(i_{\beta}-\frac{E}{R}\right) e^{\frac{-(\omega t-\beta)}{Q}} \quad, \quad i_{\beta}<0$
(3) $\pi<\omega t<\pi+\beta, \quad v=0, D_{4} \& T_{2}$ on.
$i=-i_{o} e^{\frac{-(\omega t-\pi)}{Q}}$
(4) $\pi+\beta<\omega t<2 \pi, v=-E, T_{3} \& T_{4}$ or $D_{4}+D_{3}$ on.
$i=-\frac{E}{R}-\left(i_{\beta}-\frac{E}{R}\right) e^{\frac{-(\omega t-\pi-\beta)}{Q}}$
$i=-\frac{E}{R}-\left(i_{\beta}-\frac{E}{R}\right) e^{\frac{-\left(t-\frac{\pi}{\omega}-\frac{\beta}{\omega}\right)}{\tau}}$
where $\quad \tau=\frac{L}{R}$

At $\omega t=\beta \quad i=i_{\beta}$
$i_{\beta}=i_{o} e^{\frac{-\beta}{Q}}$

At $\omega t=\pi \quad i=-i_{0}$
$-i_{o}=\frac{E}{R}+\left(i_{\beta}-\frac{E}{R}\right) e^{\frac{-(\pi-\beta)}{Q}}$
Solving (1) \& (2) gives:
$i_{\beta}=-\frac{E}{R} * \frac{e^{\frac{-\beta}{Q}}-e^{\frac{-\pi}{Q}}}{1+e^{-\frac{\pi}{Q}}}$
$i_{o}=-\frac{E}{R} * \frac{1-e^{\frac{-(\pi-\beta)}{Q}}}{1+e^{\frac{-\pi}{Q}}}$

Load commutation of the half-bridge inverter:

Let the current i goes to zero at time $\mathrm{t}=\mathrm{t}_{\mathrm{x}}$ during the first half-cycle.
Let $t_{\text {off }}$ is the turn-off time of thyristors T_{1} and T_{2}.

$$
t_{q}=\frac{T}{2}-t_{x}>t_{o f f} \quad \sec
$$

When the gating signal is removed from T_{1} and T_{2} is turned on at $t=T / 2, T_{1}$ will not conduct. Then the inverter is load-commutate. If $\mathrm{t}_{\mathrm{q}}<\mathrm{t}_{\mathrm{off}}$ then the thyristors must be forcedcommutated.

Sinewave single-phase inverters:

The commutation circuit is not shown

McMurray-Bedford bridge inverter:

The operation of this circuit can be summarized as follows:
1- when T_{1} and T_{2} are fired the current will flow through T_{1}, L_{1}, the load, L_{2}, and T_{2}.
2- The firing of T_{3} will commutate T_{2} and T_{4} will commutate T_{1}. This commutation is called complete commutation.

3- This commutation process can be explained as follows:
a- The load is assumed to be highly inductive and the voltage drop across L_{1} is zero. $\mathrm{V}_{\mathrm{C}_{1}}=0, \mathrm{~V}_{\mathrm{T}_{1}}=0$.
b- When T_{4} is fired, the voltage $\mathrm{V}_{\mathrm{T}_{4}}=0$ and the voltage $\mathrm{V}_{\mathrm{C}_{4}}=\mathrm{E}$ is completely applied to L_{4}. This will induce an equal voltage on L_{1}.
c- This will apply a reverse voltage (E) on the thyristor T_{1}, thus it will be turned-off.

4- The current through T_{1} is reduced to zero.

5- The current through L_{4} is equal to the current through L_{1} because $L_{1}=L_{4}$.

6- C_{4} is discharged and C_{1} is charged. The charging current is flowing through the load and through $\mathrm{L}_{4} \& \mathrm{~T}_{4}$. The load current remains constant during this time (charging and discharging) due to the high load inductance.

7- Due to C_{4} discharging the current through $\mathrm{L}_{4} \& \mathrm{~T}_{4}$ is increased. The voltage on L_{4} is reduced and this will reduced the induced voltage on L_{1}.

8- The voltage across T_{1} is equal to the net voltage in the closed circuit $T_{1}, L_{1} \& C_{1}$, i.e., $\mathrm{V}_{\mathrm{T}_{1}}=\mathrm{V}_{\mathrm{C}_{1}}-\mathrm{V}_{\mathrm{L}_{1}}$.

9- At $t=t_{x}$ (when $V_{T_{1}}=0$, i.e., $V_{\mathrm{C}_{1}}=V_{L_{1}}$), T_{1} will be forward biased and thus it must be turned-off before t_{x}.

10- At the end of C_{1} charging, $\mathrm{V}_{\mathrm{C}_{1}}=\mathrm{E}$. The energy stored in the load inductance is returned back to the supply through $D_{3} \& D_{4}$ and the load current is reduced to zero. The thyristor T_{4} must be fired again to carry the negative load current.

11- The energy stored in L_{4} is dissipated through $T_{4} \& D_{4} \& L_{4}$. The energy stored in L_{1}, $\mathrm{L}_{2}, \mathrm{~L}_{3}$ and L_{4} increases with load current and output frequency. This dissipated energy reduces the inverter efficiency and this energy is called the trapped energy.

Pulse width modulation inverters:

The output voltage of an inverter can be changed by using pulse width modulation technique and it is also possible to reduce the harmonic contents through the use of modified sinusoidal pulse-width modulation.

Let T_{1} is fired at:
$\omega \mathrm{t}=0, \alpha_{2}, \pi-\alpha_{1}, \pi+\alpha_{1}, 2 \pi-\alpha_{2}$
and T_{4} is fired at:
$\omega \mathrm{t}=\alpha_{1}, \pi-\alpha_{2}, \quad \pi, \quad \pi+\alpha_{2}, \quad 2 \pi-\alpha_{1}$

This firing of T_{2} is delayed by an angle β from T_{1} and similarly for T_{3} and T_{4}.

$$
\begin{gathered}
V_{o}=\frac{a_{o}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \sin n \omega t+b_{n} \cos n \omega t\right) \\
\frac{a_{o}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} V_{o} d \omega t=0
\end{gathered}
$$

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} V_{o} \sin n \omega t d \omega t=\frac{2}{\pi} \int_{0}^{\pi} V_{o} \sin n \omega t d \omega t \\
=\frac{4}{\pi} E\left[\int_{\beta}^{\alpha_{1}} \sin n \omega t d \omega t+\int_{\alpha_{2}}^{\beta+\alpha_{1}} \sin n \omega t d \omega t+\int_{\beta+\alpha_{2}}^{\frac{\pi}{2}} \sin n \omega t d \omega t\right] \\
=\frac{4}{\pi} \frac{E}{n}\left[\cos (n \beta)-\cos \left(n \alpha_{1}\right)+\cos \left(n \alpha_{2}\right)-\cos \left(n \beta+n \alpha_{1}\right)+\cos \left(n \beta+n \alpha_{2}\right)\right]
\end{gathered}
$$

if $\beta=0$

$$
a_{n}=\frac{4}{\pi} \frac{E}{n}\left[1-2 \cos n \alpha_{1}+2 \cos n \alpha_{2}\right]
$$

Let $a_{3}=a_{5}=0$

$$
\begin{aligned}
& 1-2 \cos \left(3 \alpha_{1}\right)+2 \cos \left(3 \alpha_{2}\right)=0 \\
& 1-2 \cos \left(5 \alpha_{1}\right)+2 \cos \left(5 \alpha_{2}\right)=0 \\
& \therefore \alpha_{2}=33.3^{\circ} \& \alpha_{1}=23.62^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} V_{o} \cos (n \omega t) d \omega t=0 \text { [No cosine harmonic in the output] } \\
v_{1}=\frac{4}{\pi} E\left[\cos (\beta)-\cos \left(\alpha_{1}\right)+\cos \left(\alpha_{2}\right)-\cos \left(\beta+\alpha_{1}\right)+\cos \left(\beta+\alpha_{2}\right)\right] \sin (\omega t)
\end{gathered}
$$

$v_{3}=0, v_{5}=0$

$$
\begin{aligned}
& v_{7}=\frac{4}{\pi} \frac{E}{7}\left[\cos (7 \beta)-\cos \left(7 \alpha_{1}\right)\right. \\
& \left.\quad+\cos \left(7 \alpha_{2}\right)-\cos \left(7 \beta+7 \alpha_{1}\right)+\cos \left(7 \beta+7 \alpha_{2}\right)\right] \sin (7 \omega t)
\end{aligned}
$$

etc.

Three-phase inverters:

There are three modes of operation in a half-cycle:
1- During mode " 1 " for $0 \leq \omega t<\pi / 3$, thyristors 1,6 , and 5 are on:

$$
\begin{gathered}
R_{\text {eq }}=R+\frac{R}{2}=\frac{3}{2} R \\
\therefore I=\frac{E}{\frac{3}{2} R}=\frac{2 E}{3 R} \\
v_{\text {an }}=I \frac{R}{2}=\frac{E}{3}=v_{c n} \\
v_{\text {bn }}=-I R=-\frac{2 E}{3}
\end{gathered}
$$

2- During mode " 2 " for $\pi / 3 \leq \omega t<2 \pi / 3$, thyristors 1,6 , and 2 are on:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}+\frac{\mathrm{R}}{2}=\frac{3}{2} \mathrm{R} \\
\therefore \mathrm{I}=\frac{\mathrm{E}}{\frac{3}{2} \mathrm{R}}=\frac{2 \mathrm{E}}{3 \mathrm{R}} \\
\mathrm{v}_{\mathrm{an}}=\mathrm{IR}=\frac{2 \mathrm{E}}{3} \\
\mathrm{v}_{\mathrm{bn}}=\mathrm{v}_{\mathrm{cn}}=-\mathrm{I} * \frac{\mathrm{R}}{2}=-\frac{\mathrm{E}}{3}
\end{gathered}
$$

3- During mode " 3 " for $2 \pi / 3 \leq \omega t<\pi$, thyristors 1,3 , and 2 are on:

$$
\begin{gathered}
R_{\mathrm{eq}}=\mathrm{R}+\frac{\mathrm{R}}{2}=\frac{3}{2} \mathrm{R} \\
\therefore \mathrm{I}=\frac{\mathrm{E}}{\frac{3}{2} \mathrm{R}}=\frac{2 \mathrm{E}}{3 \mathrm{R}} \\
\mathrm{v}_{\mathrm{an}}=\mathrm{v}_{\mathrm{bn}}=\mathrm{I} \frac{\mathrm{R}}{2}=\frac{\mathrm{E}}{3} \\
\mathrm{v}_{\mathrm{cn}}=-\mathrm{IR}=-\frac{2 \mathrm{E}}{3}
\end{gathered}
$$

Example: A series inverter is connected to 100 V dc supply. The RLC load of the inverter has the following values: $\mathrm{R}=1.5 \Omega, \mathrm{~L}=20 \mu \mathrm{H}$, and $\mathrm{C}=10 \mu \mathrm{~F}$. The turn-off time of the used thyristors is $10 \mu \mathrm{sec}$. Calculate:
a- The maximum frequency that this inverter can give.
b- The voltage range across the capacitor.
c- Maximum current.

Solution:

(a) $f_{m}=\frac{1}{t_{1 o n}+t_{q_{1}}+t_{2 o n}+t_{q_{2}}}=\frac{1}{T}$
$t_{1 o n}=t_{2 o n}=\frac{\pi}{\omega}, \quad t_{q_{1}}=t_{q_{2}}=10 \mu \mathrm{sec}$
$\omega=\sqrt{\omega_{o}^{2}-\alpha^{2}}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}=\sqrt{\frac{1}{20 * 10^{-6} * 10 * 10^{-6}}-\frac{1.5^{2}}{4\left(20 * 10^{-6}\right)}}=59947.894 \mathrm{rad} / \mathrm{sec}$.

$$
\begin{gathered}
\therefore f_{m}=\frac{1}{2 t_{\text {on }}+2 t_{q}}=\frac{1}{\frac{2 \pi}{\omega}+2 t_{q}}=\frac{1}{\frac{2 \pi}{59947.894}+2 * 10 * 10^{-6}}=8012.129 \mathrm{~Hz} \\
\alpha=\frac{R}{2 L}=\frac{1.5}{2 * 20 * 10^{-6}}=37500
\end{gathered}
$$

(b) For the first period:

$$
i=\frac{E-V_{C_{2}}}{\omega L} e^{-\alpha t} \sin \omega t
$$

$$
v_{C}=E-v_{L}-v_{R}=E-\frac{E-V_{C_{2}}}{\omega} e^{-\alpha t}(\omega \cos \omega t-\alpha \sin \omega t)-\frac{E-V_{C_{2}}}{\omega L} e^{-\alpha t} \sin \omega t
$$

At $t=\frac{\pi}{\omega} \Rightarrow \omega t=\pi \quad v_{C}=V_{C_{1}}$
$v_{C}=V_{C_{1}}=E+\left(E-V_{C_{2}}\right) e^{\frac{-\pi \alpha}{\omega}}$
For the second period:
$v_{C}=-\left(v_{R}+v_{C}\right)$

$$
\begin{gathered}
i=-\frac{V_{C_{1}}}{\omega L} e^{-\alpha t} \sin \omega t \\
=\frac{V_{C_{1}}}{\omega L} R e^{-\alpha t} \sin \omega t+\frac{V_{C_{1}}}{\omega} e^{-\alpha t}(-\alpha \sin \omega t+\omega \cos \omega t)
\end{gathered}
$$

At $t=\frac{\pi}{\omega} \Rightarrow \quad v_{C}=v_{C_{2}}$
$v_{C_{2}}=\frac{V_{C_{1}}}{\omega} e^{\frac{-\pi \alpha}{\omega}}(-\omega)=-V_{C_{1}} e^{\frac{-\pi \alpha}{\omega}}$
From (2) in (1)

$$
\begin{gathered}
V_{C_{1}}=\frac{E}{1-e^{\frac{-\pi \alpha}{\omega}}}=\frac{100}{1-e^{-37500 * \pi / 59947.894}}=116.296 \mathrm{~V} \\
V_{C_{2}}=-116.296 e^{-37500 * \pi / 59947.894}=-16.2963 \mathrm{~V}
\end{gathered}
$$

(c)

$$
\begin{gathered}
i=\frac{E-V_{C_{2}}}{\omega L} e^{-\alpha t} \sin \omega t \\
\frac{d i}{d t}=0=\frac{E-V_{C_{2}}}{\omega L} e^{-\alpha t}(-\alpha \sin \omega t+\omega \cos \omega t)=0 \\
\alpha \sin \omega t=\omega \cos \omega t \\
\tan \omega t=\frac{\omega}{\alpha} \\
\tan (59947.894 t)=\frac{59947.894}{37500} \\
\therefore \omega t=1.01181 \\
\therefore t=16.878 \mu \sec \\
\therefore i=\frac{100-(-16.2963)}{59947.894 * 20 * 10^{-6}} e^{-37500 * 16.878 * 10^{-6}} \sin (1.01181)=43.6693 \mathrm{~A}
\end{gathered}
$$

Sheet No. 2

1- A single-phase half-bridge inverter with RLC load for which $R=0.8 \Omega$, $\omega \mathrm{L}=10 \Omega, 1 / \omega \mathrm{C}=10 \Omega, \mathrm{E} / 2=25 \mathrm{~V}$. The gating signals are arranged to have a rectangular voltage wave of amplitude $\mathrm{E} / 2$ and periodic time T .
a- Find the equation of the fundamental load current.
b- Show that the power delivered by the two sources is equal to the power delivered to the load circuit.
c- State whether this circuit will require forced commutation.
2- Repeat example-1 with $1 / \omega C=9.2 \Omega$.

3- A single-phase bridge inverter with freewheeling diodes is connected to 300 V supply. The load is an RLC series circuit in which $\mathrm{R}=0.5 \Omega, \omega \mathrm{~L}=10 \Omega$ and $1 / \omega \mathrm{C}=10.5 \Omega$. $\mathrm{T}=1 \mathrm{msec}$.

The output voltage is a rectangular wave at 300 V amplitude and periodic time T .
a - Repeat parts a and b of example- 1 .
b- Calculate the time available for turn-off of the thyristors with this load circuit.
4- A single-phase bridge inverter with freewheeling diodes is connected to RLC load. The gate signals of T_{1} and T_{4} are delayed by $\beta=\pi / 3$ rad. from the gate signals of T_{2} and T_{3} respectively.
a- Draw one cycle of the required gate current waveforms for the four thyristors.
b- If the load circuit is such that i_{L} passes through zero value at ωt equal to:
(i) 0 and $\pi \mathrm{rad}$.
(ii) $\pi / 3$ and $\pi+\pi / 3 \mathrm{rad}$.
(iii) $-\pi / 3$ and $\pi-\pi / 3 \mathrm{rad}$.
draw for each one cycle of the current waveform and indicate on it which devices are conducting in the various intervals throughout the cycle.

5- A single-phase bridge inverter with freewheeling diodes has a positive gate voltage on G_{1} and G_{2} between $\pi / 6$ to $5 \pi / 6$ and a positive gate voltage on G_{3} and G_{4} between $7 \pi / 6$ to $11 \pi / 6 \mathrm{rad}$. At the end of each gating signals the two thyristors are commutated. Draw one cycle of the load-circuit fundamental current and voltage waveforms if the load is resistive. Indicate with current waveform which devices are conducting in the various intervals throughout the cycle.

6- A series interval is connected to 300 V supply and $\mathrm{R}=3 \Omega, \mathrm{~L}=40 \mu \mathrm{H}$, and $\mathrm{C}=5 \mu \mathrm{~F}$. The output frequency is to be 8000 Hz . Determine:
a- The minimum time provided for turn-off $\mathrm{t}_{\mathrm{q} \text { min }}$.
b- The peak thyristor current.
c- The power output.
d- The rms thyristor current.
e- Sketch the waveforms of the output current.

7- Repeat example-6 for $\mathrm{R}=1 \Omega$.
8- A single-phase half-bridge inverter with freewheeling diodes has a resistive load of $\mathrm{R}=2.4 \Omega$ and the dc input voltage is $\mathrm{E}=48 \mathrm{~V}$. The output voltage is a rectangular wave. Determine:
a- The rms output voltage at the fundamental frequency.
b- The output power.
c- The average and peak currents of each thyristor.
d- The reverse blocking voltage of each thyristor.

9- Repeat example- 8 for a single-phase bridge inverter with freewheeling diodes.
10- The inverter in example-9 has an RLC load with $\mathrm{R}=10 \Omega, \mathrm{~L}=31.5 \mathrm{mH}$, and $\mathrm{C}=112 \mu \mathrm{~F}$. The inverter frequency, $\mathrm{f}_{\mathrm{o}}=60 \mathrm{~Hz}$ and the dc input voltage $\mathrm{E}=220 \mathrm{~V}$.
a- Express the instantaneous load current in Fourier series.

Calculate the,
b- The rms load current at fundamental frequency.
c- Output power.
d- Average current of the dc supply.
e- The rms and peak current of each thyristor.
f- Draw the waveform of fundamental load current and show the conduction intervals of the thyristors and diodes. Calculate the conduction time of the thyristors and diodes.

